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Statistical mechanics of granular gases in compartmentalized systems
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We study the behavior of an assembly ofN granular particles contained in two compartments within a simple
kinetic approach. The particles belonging to each compartment collide inelastically with each other and are
driven by a stochastic heat bath. In addition, the fastest particles can change compartment at a rate that depends
on their kinetic energy. Via a Boltzmann velocity distribution approach, we first study the dynamics of the
model in terms of a coupled set of equations for the populations in the containers and their granular tempera-
tures and find a crossover from a symmetric high-temperature phase to an asymmetric low-temperature phase.
Finally, in order to include statistical fluctuations, we solve the model within the direct simulation Monte Carlo
approach. Comparisons with previous studies are presented.
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I. INTRODUCTION

In recent years considerable progress has been achiev
the understanding of granular gases, i.e., assemblies of m
ing inelastic solid grains mutually colliding and losing a litt
energy in each collision@1,2#. They exhibit a fascinating and
rich phenomenology that comprehends clustering@3–5#,
spontaneous vortex formation@6#, and breakdown of kinetic
energy equipartition in granular mixtures@7,8#. More funda-
mentally granular gases represent one of the prototyp
nonequilibrium systems.

Major progress has been achieved by considering the
plest situations, i.e., spatially homogeneous and tim
independent systems. In spite of that, inhomogeneities do
always represent a nuisance or an undesired complica
but, on the contrary, they can be a source of new insig
Within such a perspective, external fields have been in
duced on purpose in order to probe the inhomogeneous
havior of granular gases. The seminal work of Schlicht
and Nordmeier@9# has stimulated a vivid interest in the b
havior of the so called compartmentalized systems. A b
whose base moves periodically up and down, is separate
a vertical barrier into two compartments that communic
through an orifice. For strong shaking the two halves
equally populated, as it would occur in the case of a stand
molecular fluid, whereas for weaker driving the symmetry
spontaneously broken. The resulting scenario resembles
of an equilibrium thermodynamical phase transition, with t
population difference between the two compartments play
the role of the order parameter and the driving intensity t
of temperature. Our understanding of the problem has
creased since then due to a series of studies. These com
new experiments@12,13#, phenomenological flux model
@10,14#, hydrodynamic equations, and molecular dynam
simulation@11,22#.

The scope of the present contribution is to show that
choosing a simplified yet significant model of compartme
talized granular gas it is possible not only to derive a se
equations describing the evolution of the macro state of
1063-651X/2003/68~3!/031306~9!/$20.00 68 0313
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system, but also to obtain information about its microsco
fluctuations. The present approach represents a bridge
tween the phenomenological level of Refs.@12–14# and the
statistical mechanical level@15#.

The present paper is organized as follows: in the fi
section we define the model and introduce the statistical
scription of the system, based on a Boltzmann equation
the distribution functions, modified to take into account t
stochastic driving. At this stage we follow the strategy
integrating out microscopic fluctuations going from a micr
scopic description based on the Boltzmann equation t
macroscopic level, where only the occupation numbers
the granular temperatures of the two compartments, i.e.,
first two moments of the distribution function are taken in
account. This is equivalent to neglecting inhomogeneities
the system at scales smaller than the linear size of the c
partments. To obtain qualitative insight, we first try a Gau
ian solution. In other words, we assume that the veloc
probability density function~PDF’s! are Gaussians, whos
normalizations and variances~related to the occupation num
bers of the compartments and to their granular temperatu
respectively!, can be determined by means of a set of se
consistent differential equations. The analysis shows the
istence of a transition from a symmetric phase, where
compartments are equally populated and are at the s
granular temperature, to an asymmetric phase, where the
compartments have different properties. Various predicti
are made: we locate the bifurcation point, obtain relatio
between the asymptotic values of the temperatures and
sities in the compartments, estimate the characteristic ti
to observe the symmetry breaking, etc. In the second sec
we relax the Gaussian hypothesis about the nature of
velocity fluctuations and let the populations in the two co
partments fluctuate as well. This is done by solving nume
cally the full Boltzmann equation by means of the dire
simulation Monte Carlo~DSMC! @16#. We notice deviations
with respect to the treatment in Sec. I, in particular near
critical point. Finally, in the last section we present our co
clusions.
©2003 The American Physical Society06-1
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II. THE MODEL

Let us consider a system, composed of two compartm
A and B of the same volume,VA5V/2, and containingNA
andNB particles, respectively. Particle pairs belonging to
same compartment may collide inelastically losing a fract
of their kinetic energy, but conserving their total momentu
The postcollisional velocities (v1* ,v2* ) are determined by the
transformation

v1* 5v12
1

2
~11a!~v12•ŝ!ŝ, ~1!

wherev125v12v2 anda is the restitution coefficient.
In addition, we assume that all the grains are subjec

the action of an external stochastic driving force and th
motion between two successive collisions is described by
following Ornstein-Uhlenbeck process:

dvi

dt
52

1

tb
vi1 ĵi , ~2!

where2tb
21vi is a friction term andji a Gaussian random

acceleration, of zero average and variance given by

^j ia~ t !j j b~ t8!&52
Tbm

tb
d i j dabd~ t2t8!, ~3!

whereTb is a measure of the intensity of the driving. Notic
that in the elastic case (a51), the average kinetic energ
per particle moving in ad-dimensional space isK5dTb/2,
which is just the ideal gas value. The simultaneous prese
of frictional dissipation and random ‘‘kicks’’ renders the k
netic energy of the system stationary even in the absenc
collisional dissipation.

To complete the model, we allow the particles contain
in A(B) to move intoB(A) with a probability per unit time,
ts

21 , provided their kinetic energy exceeds a given thre
old, say Ts5

1
2 mus

2 . Such a mechanism schematizes t
jump process by which particles may pass from one comp
ment to the other by overcoming a vertical barrier of heig
h only if 1

2 mv2.mgh.
We shall make the key assumption, dictated by ma

ematical convenience, of ignoring the spatial gradients
characterize experimental situations. To be specific we st
late which within the spatial domain, that represents a co
partment, the system is homogeneous. The effect of the
viding vertical wall is schematized by a selection rule
probabilistic nature, which allows only the more energe
particles to cross the barrier.

To make analytic progress we shall transform the stoch
tic evolution equations for the velocities of the particles in
a system of deterministic equations for the distribution fu
tions. In order to achieve this description, we shall treat
collisions at the level of the Boltzmann molecular chaos
proximation. This approximation, widely employed even
the case of granular systems, is equivalent to neglecting
relations among the colliding particles.
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In order to study the statistical evolution of the syste
we assume that the single particle phase-space distribu
function f (r ,v,t) satisfies the following properties:

NA(B)~ t !5E
VA(B)

drE dvf ~r ,v,t !, ~4!

whereNA(B)(t) is the average number of particles in com
partmentA(B) at instantt. The average kinetic energy pe
particle, the granular temperatureTA(B) , is defined as

TA(B)~ t !5
1

NA(B)~ t !dEVA(B)

drE dvmv2f ~r ,v,t !. ~5!

In the following we shall make the assumption that
describe the essential properties of the system, we do
need the detailed information contained inf (r ,v,t), but these
can be captured by the following coarse grained distributi
obtained by eliminating ther dependence of the original dis
tributions:

f A(B)~v,t !5
1

VA(B)
E

VA(B)

dr f ~r ,v,t !. ~6!

The change off A(B)(v,t) is given by

] t f A~v1 ,t !5I ~ f A , f A!1
Tb

tb
S ]

]v1
D 2

f A~v1 ,t !

1
1

tb

]

]v1
f A~v1 ,t !2

1

ts
u~ uv1u2us!@ f A~v1 ,t !

2 f B~v1 ,t !#, ~7!

whereu(x) is the Heaviside function. The first term repr
sents the change of the distribution due to collisions,
second and the third terms are due to the interaction with
heat bath and the last describes the population change d
the particles migrating from one compartment to the ot
@16#.

In order to obtain an explicit expression for the collisio
integralI ( f , f ) in the case of inelastic hard spheres, we sh
follow closely the derivation of Ernst and Van Noije@17# and
set

I ~ f A , f A!5sd21E dv2E 8
dŝ~v12•ŝ!

3H 1

a2
f A~v1** ,t ! f A~v2** ,t !

2 f A~v1 ,t ! f A~v2 ,t !J . ~8!

The prime on theŝ integration enforces the conditio
v12•ŝ.0, whereŝ is a unit vector along the line of center
of the colliding spheres at contact, whereasvi** represent the
precollisional velocities, which can be computed by inv
sion of Eq.~2!.
6-2
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By integrating over the spatial coordinate and over
velocity it is straightforward to obtain the equation for th
rate of change of the occupation numbersNA and NB . It
reads

dNA~ t !

dt
52

VA

ts
E dv1@ f A~v1 ,t !2 f B~v1 ,t !#u~ uv1u2us!.

~9!

We see that when the typical timets diverges, there is no
particle exchange between the two compartments, t
NA ,NB are constant, and the temperatures reach a con
value, which depends on the heat bath properties, the ph
cal properties of the particles, and on their number.

In order to obtain the energy equation, instead, we mu
ply both sides bymv1

2 and integrate over coordinate an
velocity space:

d@NA~ t !TA~ t !#

dt
5

2

tb
NA@Tb2TA~ t !#

1
2

d

NA

VA
sd21vAm2NA~ t !TA~ t ! ~10!

2
VA

tsd
E dv1mv1

2@ f A~v1 ,t !2 f B~v1 ,t !#

3u~ uv1u2us!, ~11!

where we have introduced, following Ref.@17#, the nondi-
mensional quantitym2,

m252
1

vA
3

V2

N2E dv1v1
2I ~ f A , f A!

52
1

vA
3

V2

N2E dv1v1
2E dv2E 8

dŝ~v12•ŝ!

3H 1

a2
f A~v1** ,t ! f A~v2** ,t !2 f A~v1 ,t ! f A~v2 ,t !J

~12!

with vA(B)
2 52TA(B) /m. In the following we shall setm

51. A more compact notation is achieved if one introduc
the collision frequencyvA(t) and the nondimensional spon
taneous cooling rateg,

vA5
Vd

A2p

NA

VA
sd21vA , ~13!

g5
A2p

dVd
m2 ~14!

with Vd52pd/2/G(d/2). The surface area of
d-dimensional unit sphere. In the remainder of the paper
shall measure the temperature in units ofTs , time in units of
tb , and length in units ofs.
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To proceed further analytically we choosed52 and as-
sume an approximate Gaussian form@18# of the distribution
function:

f A(B)~v,t !5
NA(B)

VA(B)

1

p2TA(B)
expS 2

v2

2TA(B)
D . ~15!

In this case one can evaluate explicitly the collision te
@17#

m25~12a2!
pd/221

A2G~d/2!
, ~16!

gvA5s~12a2!
NA

2VA
ATA

m
. ~17!

We find

dNA~ t !

dt
5

1

ts
@NBe2Ts /TB2NAe2Ts /TA#, ~18!

where the temperatureTs is given byTs5
1
2 mus

2 . Notice that
the right hand side of the equation above represents the
ference between the incoming flux and the outgoing flux
compartmentA. A similar expression has been chosen
Droz and Lipowski@14# on phenomenological grounds. Th
model we study allows us to obtain self-consistently the te
peraturesTA andTB , a feature that was not present in mo
of the studies dedicated to compartmentalized systems@19#.
In fact, we can write

d@NA~ t !TA~ t !#

dt
52

2

ts
@NA~TA1TS!e2Ts /TA

2NB~TB1TS!e2Ts /TB#22gvANATA

1
2

tb
NA~Tb2TA!, ~19!

d@NB~ t !TB~ t !#

dt
52

2

ts
@NB~TB1TS!e2Ts /TB

2NA~TA1TS!e2Ts /TA#22gvBNBTB

1
2

tb
NB~Tb2TB!. ~20!

Notice that the Arrhenius type of behavior of the tran
tion rate tse

Ts /TA results from the combination of two as
sumptions:~a! the fact that only particles whose energy e
ceeds the thresholdTs can overcome the barrier;~b! the
Gaussian ansatz for the velocity distribution functions. T
latter ingredient, although very convenient for numeric
work, could result too crude in some physically relevant si
ations, because the dynamics represent a severe probe o
extreme value statistics of the system. It is well known th
the velocity distribution of driven and undriven granular a
semblies might be characterized by fat velocity tails@16#.
6-3
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III. MEAN FIELD ANALYSIS

It is convenient to rewrite the coupled equations as

dNA~ t !

dt
5

1

ts
@NBe2Ts /TB2NAe2Ts /TA#, ~21a!

NA

dTA~ t !

dt
52

1

ts
@2~NATAe2Ts /TA2NBTBe2Ts /TB!

1~NAe2Ts /TA2NBe2Ts /TB!~2Ts2TA!#

22gvANATA1
2

tb
NA~Tb2TA!, ~21b!

NB

dTB~ t !

dt
52

1

ts
@2~NBTBe2Ts /TB2NATAe2Ts /TA!

1~NBe2Ts /TB2NAe2Ts /TA!~2Ts2TB!#

22gvBNBTB1
2

tb
NB~Tb2TB!. ~21c!

Let us observe that in the temperature equations th
appear two types of fluxes: the first due to the unbalanc
kinetic energies, and the second due to the population di
ence. We identify the first with a heat conduction process
the second with a particle diffusion process.

One sees by inspection that the choiceNA5NB5N*
5N/2 andTA5TB5T* represents a symmetric solution fo
all values of the control parameters. The granular temp
ture of the symmetric state,T* , is given by the nonlinear
equation

T* F11tbs~12a2!
N*

2VA
AT*

m G5Tb . ~22!

In order to ascertain the stability of such a symmetric so
tion we assumeTA5T* 1dTA , TB5T* 1dTB , and NA
5N* 1dNA(dNB52dNA) and expand the equations to lin
ear order about the fixed pointT* ,N* with the result

dṄA52
1

ts
e2Ts /T* F2dNA1

N* Ts

~T* !2
~dTA2dTB!G ,

~23!

dṪA52
1

ts
e2Ts /T* F21

Ts

T*
1S Ts

T*
D 2G ~dTA2dTB!

2S 3gv* 1
2

tb
D dTA2

2

N*
F 1

ts
e2Ts /T* ~T* 12Ts!

1gv* T* GdNA , ~24!
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dṪB5
1

ts
e2Ts /T* F21

Ts

T*
1S Ts

T*
D 2G ~dTA2dTB!

2S 3gv* 1
2

tb
D dTB1

2

N*
F 1

ts
e2Ts /T* ~T* 12Ts!

1gv* T* GdNA . ~25!

The eigenvalues of the associated 333 matrix of coeffi-
cients give the three relaxation modes. By adding and s
tracting the last two equations the linear system factori
into a decoupled equation for the average value of the
temperatures @(dTA1dTB)/2# with eigenvalue l35
2(3gv* 12/tb) and a system of rank 2 involving the tem
perature difference and the occupation number. The m
negative of the remaining eigenvalues~we call it l2) is of
the same order asl3, while the second, sayl1, is smaller in
absolute value and vanishes at the ‘‘special’’ temperat
Tcr . This is obtained by solving the transcendental equat

tsgv* S Ts

Tcr
2

3

2D2
ts

tb
52e2Ts /Tcr. ~26!

Figure 1 shows that above the temperatureTcr , l1 is
negative, thus making the symmetric solution stable, wher
for temperatures below itl1 is positive. In such a case th
symmetric fixed point is unstable and the solution flo
away, to an asymmetric fixed point. Hereafter, we shall u
the word ‘‘critical temperature’’ or ‘‘critical line’’ instead of
‘‘special’’ @20#.

Let us also notice that when the typical collision time
much shorter than the characteristic timestc andtb the tem-
peratureTcr→2Ts/3, which represents an upper bound f
such a quantity.

FIG. 1. Variation of the eigenvalues of the dynamical mat
with respect to the granular temperature. Notice that below the c
cal temperature the less negative eigenvalue displays a maxim
This is determined by the competition between the inhibiting fac
due to the wall and the collisional dissipation which favors a sy
metry breaking.
6-4
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At this stage a few comments are in order. The transit
results from the competition between two effects: the dif
sion due to the ‘‘thermal’’ agitation of the particles, i.e., th
tendency to fill all the available space, and the dissipation
energy during collisions which favors clusterization.

When the external drive is sufficiently weak there appe
a second fixed point. This is found by imposing the detai
balance

NB

NA
5

e2Ts /TA

e2Ts /TB
~27!

and the energy balance

2
2

ts
~NATAe2Ts /TA2NBTBe2Ts /TB!22gvANATA

1
2

tb
NA~Tb2TA!50, ~28!

2

ts
~NATAe2Ts /TA2NBTBe2Ts /TB!22gvBNBTB

1
2

tb
NB~Tb2TB!50. ~29!

A good approximation to the highest eigenvalue in suc
case reads

l15
2

3
e2Ts /T* @v* g~Ts /T* 23/2!21/tb22e2Ts /T* #.

One observes two regions where the solutions are ap
ently metastable. The first is the low-temperature regi
where a detailed inspection shows that the symmetric s
in reality, is very weakly unstable. From Fig. 1 we see tha
low temperatures (T* →0) the positive eigenvaluel1 van-
ishes exponentially ase2Ts /T* , thus indicating that the sym
metric solution might appear stable if the observation time
finite. In fact, the interwell diffusion forTb→0 is almost
completely suppressed by the Arrhenius factor.

The second region where the system displays gen
~meta!stability occurs just aboveTcr . A branch with NA
ÞNB andTAÞTB is observed by integrating numerically th
system~21! by means of an Euler scheme. These asymme
stationary states are obtained by preparing the system
subcritical configuration (Tast,Tcr), and successively in
creasing the temperature aboveTcr . The width of the region
is about 10% ofTcr . The observed hysteresis agrees qu
tatively with the results relative to the model of Ref.@14#.

The numerical solutions of the coupled equations are
played in Figs. 2 and 3. We observe that a perturbation ab
the symmetric solution is readsorbed forTast.Tcr , whereas
for temperatures belowTcr the perturbation grows initially a
an exponential rate, before saturating about a finite value.
us notice that at low temperatures, due to the presence o
Arrhenius factor, the saturation process occurs extrem
slowly, a phenomenon that is not related to the slowing do
that occurs only in the vicinity ofTcr .
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In Fig. 4 we display the line of critical pointsTcr as a
function of the inelasticity (12a) for two different values of
the total number of particles. Above the line the solutions
symmetric (NA5NB), below are asymmetric. Let us observ
that for a51 one findsTcr50, because there is no cluste
ing instability in systems of elastic particles. The smaller t
value ofa, the higher the value of the critical temperatur
We also notice that the slope of the critical line is no
negative. When the total number of particles decreases,
the critical temperature decreases, because of the lower
lision rate.

Figure 5 illustrates the behavior of the order parame
e5uNA2NBu/N versus the heat bath temperature for tw
different values of the total number of particles.

Let us notice that when particles are added to the sys
the critical point shifts up-wards. This explains why th
steady number of particles in the less populated compartm
decreases when more particles are added@11#.

Finally, we comment that, within our perspective, the a
proach of Lohseet al. @12# and of Lipowski and Droz@14# is
equivalent to an adiabatic approximation for the temperat

FIG. 2. Evolution of the populations in the two compartmen
versus time, for three different choices of the heat bath tempera
Tb50.2,0.3,1. The remaining parameters are:N51000, Ts51, V
5100, s51, tb51, ts50.5, a50.7.

FIG. 3. Granular temperatures in the two compartments co
sponding to the evolution of 2.
6-5
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variables. In their cases, the two granular temperatures
assumed to be slaved by the occupation number variable
other words, one postulates that the temperatures depen
the instantaneous values of the occupation numbers.
implemented this idea within our approach, but we foun
large discrepancy with the previous approximation. In re
ity, the temperature and the occupation variable vary on
same time scale and no slaving principle seems to occu

IV. MONTE CARLO SIMULATIONS

In deriving the evolution equations of the preceding s
tion, we have implicitly stipulated that the values of the o
cupation number and of the kinetic energy per particle
each box have narrow distributions around their mean va

FIG. 4. Critical line for two different choices of the total numb
of particles 1000~below! and 10 000~above! according to the mean
field theory. Vertical axis temperature, horizontal (12a). The line
represents the granular critical temperature as the inelasticity
2a) varies from 0 to 1. Below the critical line the symmetr
solution is unstable; above it is stable. The remaining parame
are the same as in Fig. 2.

FIG. 5. Asymmetry parameter vsTb plotted for two different
choices of the total number of particles: 1000 and 1200. The
maining parameters are the same as in Fig. 2. Notice the differ
between the two curves and the presence of the hysteresis.
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and that these quantities are sufficient to characterize
state of the system. Do statistical fluctuations play any r
or even modify the picture presented above? In the pre
section, which is not intended to be exhaustive, we solve
model of Sec. I by means of the DSMC method. The mo
vation is twofold: we want to validate the picture and t
approximations introduced above and unveil some phen
ena that are not accounted for by a mean field descriptio

We simulated two ensembles ofNA andNB particles, re-
spectively, subject to a Gaussian forcing, viscous frictio
and inelastic collisions. In addition, the particles of high e
ergy can change compartment with probability per unit tim
ts

21 .
The scheme consists of the following ingredients.
Time is discretized, i.e.,t5ndt.
Update all the velocities to simulate the random forci

and the viscous damping,

v i
a~ t1dt!5v i

a~ t !e2dt/tb1ATb~12e22dt/tb!W~ t !,
~30!

whereW(t) is a normally distributed deviate with zero mea
and unit variance.

At every time step and for both compartments, a collisi
step is performed, i.e., an adequate number of randomly c
sen pairs of velocities are updated with the collision rule~1!:
the pairs are chosen with a probability proportional to th
relative velocity and normalized in order to have a me
collision frequency as calculated in Eq.~13!.

Place in the other compartment with probabilitydt/ts par-
ticles with kinetic energy greater thanTs .

Change the time countern and restart.
To summarize, at every step each particle experience

Gaussian kick and receives energy from the bath, but di
pates a fraction of its kinetic energy by collision and
damping. With respect to previous DSMC simulations
granular gases particles can migrate to another compartm
whenever their energy exceeds a fixed threshold. No pac
effects are included.

The parameters chosen in the simulation areTs51, V
5100, s51, tb51, ts50.5, a50.7, whereas the tota
number of particlesN andTb have been varied.

First, we analyze the evolution of the order parame
uNA2NBu/N, when the system is prepared in a symmet
configuration. The order parameter displays a behavior s
lar to that obtained by means of the mean field theory.
addition, it displays fluctuations around its asymptotic val
In Fig. 6, an average over 200 realizations of the evolution
the order parameteruNA2NBu/N is shown. The numerica
simulations are in agreement with the results of the m
field theory. ForTb.0.45 the system remains substantia
homogeneous. ForTb,0.45 the homogeneous state becom
unstable and the stable configuration that is reached
strongly asymmetric.

Interestingly, we observe a much slower growth~see in-
set! near the critical temperature,Tcr;0.45. The same kind
of phenomenon appears at low temperatures (T,Ts), be-
cause the transitions from one compartment to the other
resent very rare events.
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In Fig. 7 the temperature evolutionsTA(t) andTB(t) ~af-
ter averaging over 200 realizations and relabeling the c
partments in such a way thatA is always the most populated!
are displayed. The plateau values ofTA andTB verify ~with
small deviations, not larger than 10%) Eq.~27!.

The velocity fluctuation can be appreciated by consid
ing the velocity PDF’s of the two compartments, Fig. 8. A
preciable deviations from a Gaussian have not been dete
in all cases considered~neither above, neither below, nor i
the proximity of the critical temperature!.

The order parameter, instead, shows less trivial fluct
tions. A typical trajectory is shown in Fig. 9. The associat
distribution is shown in Fig. 10. We observe that at hi
temperature the population distributionP(NA) is well ap-
proximated by a Gaussian distribution, but displays two sy
metric peaks about the central valueNA5500 when the sys-
tem approaches the critical temperature. Finally, at l
temperature we find two very narrow peaks, well separa
and centered aroundNA5950 andNB550.

Let us consider more closely the behavior of the or
parameter near the critical point. According to the mean fi
description of Sec. II, atTcr the less negative eigenvalue

FIG. 6. Evolution of the order parameter versus time.N
51000, butTb is varying, while the other parameters are:Ts51,
V5100, s51, tb51, ts50.5, a50.7.

FIG. 7. Temperature evolution for various values of the h
bath temperature. The other parameters are the same as in Fi
03130
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the matrix of evolution vanishes. The picture looks someh
different when microscopic fluctuations are accounted
One observes a remarkable behavior in the order param
evolution; namely, in the earlier regime it grows in a pow
law fashion as (NA2NB)2;t, and not exponentially. To ex
plain this phenomenology we remark that the evolution
the order parameter nearTcr can be assimilated to that of
particle undergoing a random walk. We assume that the e
evolution of DN(t)5NA(t)2N/2 can be effectively de-
scribed by the following equation:

]DN~ t !

]t
5g~Tb!DN~ t !1A~Tb!h ~31!

with g lesser than zero above the critical temperature
greater than zero under the critical temperature andh a white
Gaussian noise. In this case

t
6.

FIG. 8. Velocity distribution functions in each compartment f
two different values ofTb andN51000. The other parameters a
the same as in Fig. 6. The lines represent Maxwellian velocity
tributions, whose variances have been determined from fits of
numerical data.

FIG. 9. Fluctuations of the occupation numberNA(t) vs time,
when the system is in its statistically stationary state for three
ferent choices ofTb . The other parameters are the same as in F
6.
6-7
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C~t,t !5^DN~ t1t!DN~ t !&

5F ^DN~0!DN~0!&1
A2

2gGeg(2t1t)2
A2

2g
egt,

~32!

which means that ifg,0 ~asymptotically in a time greate
than 1/ugu) the equal time correlation function becomes

^DN~ t !DN~ t !&→2
A2

2g
~33!

or equivalently A5A22g^DN2&, where DN2

5 limt→`C(0,t). On the other hand, wheng50 ~i.e., in cor-
respondence of the critical point!, the equal time correlation
function displays a diffusive behavior:

^DN~ t !DN~ t !&→A2t ~34!

that means that the diffusion coefficient for the variableDN
is given byD5A2/2.

Eventually in the late regime the growth saturates due
the onset of nonlinear effects.

In order to verify the plausibility of Eq.~31! we determine
A and g by extracting them from numerical measures
limt→`C(t,t) and imposing the asymptotic behavi
2(A2/2g)egt. In Fig. 11 we display the values of the co
stants obtained from simulations above the critical tempe
ture. We also added to the plot the value of the diffus
coefficientD5A2/2, as measured at the critical temperatu

Interestingly, when the characteristic timets decreases
~namely, ts50.1) an interesting phenomenon appears:
temperature of the less populated compartment exhibits
initial regime, during which it increases, due to the dec
ment of the number of collisions the particles experien
followed by a second regime where the temperature ins
decreasesand eventually reaches a temperature lower t
the temperature of the more populated container~Fig. 12!.
This kind of anomaly is due to the fact that the fastest a

FIG. 10. Probability distribution functions of the occupatio
numbers in a single well~top and middle panel, respectively! and in
the two wells ~bottom panel!, referred to a system ofN51000
particles. The other parameters are the same as in Fig. 6.
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more energetic particles are removed causing a large n
tive fluctuation of the associated average kinetic energy.
positive energy flux provided by the heat bath is not su
cient to compensate the energy loss due to the removal o
fast particles. This phenomenon is not observed in the m
field model, because it results from the large non-Gauss
fluctuations of the velocity PDF. We checked the fourth c
mulant and observed that whereas the cumulant relativ
the populated compartment corresponds to a Gaussian
cumulant of the small population strongly fluctuates. Expe
mentally it might be hard to observe such a phenomen
which is probably an artifact of the model, because the lim
of small ts is not very realistic.

Finally, our schematization of the compartmentaliz
granular gas recalls the Gibbs ensemble method of equ
rium statistical mechanics, whereby it is possible to stu
first order phase coexistence without interfaces@21#.

V. CONCLUSIONS

To summarize, we introduced a model for a compartm
talized granular gas which allows to bridge between

FIG. 11. Study ofA2 andg versusTb .

FIG. 12. Populations and granular temperatures of the two c
partments whents is small. Notice that the temperature of the le
populated compartment initially rises, and successively decre
below the temperature of the other compartment.
6-8
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microscopic level to the hydrodynamic level. In the first p
of the paper we have derived a Fokker-Planck-Boltzma
description starting from the stochastic evolution of the p
ticles’ coordinates. Next, by employing a Gaussian ansatz
the velocity distribution function, we have obtained a clos
set of equations for the slowly varying fields, namely, t
granular temperatures and occupation numbers of each c
partment. Let us comment that with respect to existing fl
models, our approach treats analytically the granular te
perature on equal footing as the occupation variables.
solution of the resulting equations shows the existence
two different regimes: at strong shakings the populations
the two compartments are symmetric and for weak shak
the two populations are asymmetric together with th
granular temperatures. A critical point separates these
y

hy

i,

rr.

e

ys

l-

A
.
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behaviors. The dynamics has been characterized in the
ous regimes. In the last part of the paper we have solved
full model by means of DSMC. The presence of stochas
fluctuations leads to properties not observed in a mean fi
description. These are the presence of critical fluctuations
anomalies in the dynamics of the populations, and in po
lation fluctuations.
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