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Statistical mechanics of granular gases in compartmentalized systems
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We study the behavior of an assemblyNo§ranular particles contained in two compartments within a simple
kinetic approach. The particles belonging to each compartment collide inelastically with each other and are
driven by a stochastic heat bath. In addition, the fastest particles can change compartment at a rate that depends
on their kinetic energy. Via a Boltzmann velocity distribution approach, we first study the dynamics of the
model in terms of a coupled set of equations for the populations in the containers and their granular tempera-
tures and find a crossover from a symmetric high-temperature phase to an asymmetric low-temperature phase.
Finally, in order to include statistical fluctuations, we solve the model within the direct simulation Monte Carlo
approach. Comparisons with previous studies are presented.
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[. INTRODUCTION system, but also to obtain information about its microscopic
fluctuations. The present approach represents a bridge be-
In recent years considerable progress has been achievedtimeen the phenomenological level of Ref$2—14 and the
the understanding of granular gases, i.e., assemblies of mostatistical mechanical levgl5].
ing inelastic solid grains mutually colliding and losing a little  The present paper is organized as follows: in the first
energy in each collisiofil,2]. They exhibit a fascinating and section we define the model and introduce the statistical de-
rich phenomenology that comprehends cluster[i3g-5], scription of the system, based on a Boltzmann equation for
spontaneous vortex formatidb], and breakdown of kinetic the distribution functions, modified to take into account the
energy equipartition in granular mixtur€s,8]. More funda-  stochastic driving. At this stage we follow the strategy of
mentally granular gases represent one of the prototypicahtegrating out microscopic fluctuations going from a micro-
nonequilibrium systems. scopic description based on the Boltzmann equation to a
Major progress has been achieved by considering the simmacroscopic level, where only the occupation numbers and
plest situations, i.e., spatially homogeneous and timethe granular temperatures of the two compartments, i.e., the
independent systems. In spite of that, inhomogeneities do ndirst two moments of the distribution function are taken into
always represent a nuisance or an undesired complicatioaccount. This is equivalent to neglecting inhomogeneities of
but, on the contrary, they can be a source of new insightthe system at scales smaller than the linear size of the com-
Within such a perspective, external fields have been intropartments. To obtain qualitative insight, we first try a Gauss-
duced on purpose in order to probe the inhomogeneous bé&n solution. In other words, we assume that the velocity
havior of granular gases. The seminal work of Schlichtingprobability density function(PDF’'s) are Gaussians, whose
and Nordmeief9] has stimulated a vivid interest in the be- normalizations and varianc@®lated to the occupation num-
havior of the so called compartmentalized systems. A boxbers of the compartments and to their granular temperatures,
whose base moves periodically up and down, is separated lrgspectively, can be determined by means of a set of self-
a vertical barrier into two compartments that communicateconsistent differential equations. The analysis shows the ex-
through an orifice. For strong shaking the two halves ardstence of a transition from a symmetric phase, where the
equally populated, as it would occur in the case of a standardompartments are equally populated and are at the same
molecular fluid, whereas for weaker driving the symmetry isgranular temperature, to an asymmetric phase, where the two
spontaneously broken. The resulting scenario resembles thedmpartments have different properties. Various predictions
of an equilibrium thermodynamical phase transition, with theare made: we locate the bifurcation point, obtain relations
population difference between the two compartments playindpetween the asymptotic values of the temperatures and den-
the role of the order parameter and the driving intensity thasities in the compartments, estimate the characteristic times
of temperature. Our understanding of the problem has into observe the symmetry breaking, etc. In the second section,
creased since then due to a series of studies. These comprise relax the Gaussian hypothesis about the nature of the
new experiment§12,13, phenomenological flux models velocity fluctuations and let the populations in the two com-
[10,14], hydrodynamic equations, and molecular dynamicspartments fluctuate as well. This is done by solving numeri-
simulation[11,22. cally the full Boltzmann equation by means of the direct
The scope of the present contribution is to show that bysimulation Monte CarldDSMC) [16]. We notice deviations
choosing a simplified yet significant model of compartmen-with respect to the treatment in Sec. I, in particular near the
talized granular gas it is possible not only to derive a set otritical point. Finally, in the last section we present our con-
equations describing the evolution of the macro state of thelusions.
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Il. THE MODEL In order to study the statistical evolution of the system,

Let us consider a system, composed of two compartmenttvsve assume that the single particle phase-space distribution

A andB of the same volumey,=V/2, and containing . unction f(r,v,t) satisfies the following properties:
andNg particles, respectively. Particle pairs belonging to the

same compartment may collide inelastically losing a fraction NA(B)(t)=J’
of their kinetic energy, but conserving their total momentum. v

The postcol_lisional velocitiesvf ,v3) are determined by the \yhere Na)(t) is the average number of particles in com-
transformation partmentA(B) at instantt. The average kinetic energy per
particle, the granular temperatufg g, , is defined as

drj dvf(r,v,t), (4)

A(B)

1 A A
Vf:V1_§(1+a)(V12' o)o, (1)

Tap)(t)= drf dvmv3f(r,v,t).  (5)

Nae)(Dd vy,
wherev,,=V;—V, and « is the restitution coefficient.

In addition, we assume that all the grains are subject to In the following we shall make the assumption that to
the action of an external stochastic driving force and theidescribe the essential properties of the system, we do not
motion between two successive collisions is described by theeed the detailed information contained {m,v,t), but these

following Ornstein-Uhlenbeck process: can be captured by the following coarse grained distributions
obtained by eliminating the dependence of the original dis-
dv, 1 . tributions:
ar Ut &, ) )
fA(B)(v,t)=V—j drf(r,v,t). (6)
where — 7, !v; is a friction term andg a Gaussian random A(B) I Va(e)

acceleration, of zero average and variance given by The change of g (v,t) is given by

Tp,m

Tp
<§|a(t)§]ﬁ’(t,)>:2 T 5ij5aﬁ6(t_t,)r (3) ath(Vl,t):l(fA,fA)"‘_
b Th

ﬁ 2
(9—\/1) fa(vy,t)

wher_eTb is a measure ofihe intensity of the Qriving. Notice + i ifA(Vlvt)_ i0(|V1| —U[falvy,b)
that in the elastic casea(=1), the average kinetic energy Tp IVy Ts
per particle moving in al-dimensional space IK=dT,/2, (VD] @
which is just the ideal gas value. The simultaneous presence a(ve,U],
of f.rictional dissipation and ran_dom “kicks” renders the ki- \uhere 6(x) is the Heaviside function. The first term repre-
netic energy of the system stationary even in the absence Qs the change of the distribution due to collisions, the
collisional dissipation. _ _second and the third terms are due to the interaction with the
_ To complete the model, we allow the particles containetheat hath and the last describes the population change due to
m_f\(B) to move intoB(A) with a probability per unit ime, e particles migrating from one compartment to the other
7, provided their kinetic energy exceeds a given thresh[16]_
old, say Te=3mu. Such a mechanism schematizes the |n order to obtain an explicit expression for the collision
jump process by which particles may pass from one comparintegrall (f,f) in the case of inelastic hard spheres, we shall
ment to the other by overcoming a vertical barrier of heightfollow closely the derivation of Ernst and Van No[j#7] and
h only if smv?>mgh. set

We shall make the key assumption, dictated by math-
ematical convenience, of ignoring the spatial gradients that d-1 "o -
characterize experimental situations. To be specific we stipu- I(fa.fa)=0 f dVZf do(viy o)
late which within the spatial domain, that represents a com-
partment, the system is homogeneous. The effect of the di- o x
viding vertical wall is schematized by a selection rule of X ;fA(Vl DAz,
probabilistic nature, which allows only the more energetic
particles to cross the barrier.

To make analytic progress we shall transform the stochas- —fa(vy, ) fa(Va ,t)] . (8)
tic evolution equations for the velocities of the particles into
a system of deterministic equations for the distribution func- ] - ) -~
tions. In order to achieve this description, we shall treat the! "€ _Prime on theo integration enforces the condition
collisions at the level of the Boltzmann molecular chaos ap¥;,- >0, whereo is a unit vector along the line of centers
proximation. This approximation, widely employed even in of the colliding spheres at contact, wherea$ represent the
the case of granular systems, is equivalent to neglecting coprecollisional velocities, which can be computed by inver-
relations among the colliding particles. sion of Eq.(2).
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By integrating over the spatial coordinate and over the To proceed further analytically we choode=2 and as-
velocity it is straightforward to obtain the equation for the sume an approximate Gaussian fdrb8] of the distribution

rate of change of the occupation numbé&tg and Ng. It
reads

dN4(t) \
dAt( = — ?jj dVl[fA(Vl,t)— fB(Vllt)]0(|vl| _US)

©)

We see that when the typical timeg diverges, there is no
particle exchange between the two compartments, thus

function:

NA(B) 1
fa)(V,1) =

{-a.
= exp — . (15
Vaie) 2T Am) 2TA(B))

In this case one can evaluate explicitly the collision term
[17]

di2—1
Na,Ng are constant, and the temperatures reach a constant wo=(1—a?)———, (16)
value, which depends on the heat bath properties, the physi- V2r'(d/2)
cal properties of the particles, and on their number.
In order to obtain the energy equation, instead, we multi- 5. Na  [Ta
ply both sides bymvs and integrate over coordinate and yoa=o(l-a )2_\/A NV (17)
velocity space:
We find
dINA(DTA(t)] 2
g = = Na[Tp=Ta(1)]
dt Th dNa(t) 1 T -
—:_[NBe s B_NAe s A], (18)
2 NA dt Tg
T3 V_UdilUAMZNA(t)TA(t) (10
A where the temperatuf®, is given byT,=muZ. Notice that
v the right hand side of the equation above represents the dif-
_ A dvymv2[ fa(vy,t) = Fg(vy,t)] ference between the incoming flux and the outgoing flux of
7sd compartmentA. A similar expression has been chosen by
_ Droz and Lipowski[14] on phenomenological grounds. The
X 0(|V1| us)v (11)

where we have introduced, following Rdfl7], the nondi-
mensional quantitys,,

1 Vv? )
== i) Bt
1 V2 2 e ;
:_Emf dvlvlf def do(vi, o)

1
X[?fA(Vf* D FANVST 1) = Fa(vy, D) fa(vy ,t)]
(12

with v3g=2Ta@)/m. In the following we shall sem

model we study allows us to obtain self-consistently the tem-
peraturesT, and Ty, a feature that was not present in most
of the studies dedicated to compartmentalized sys{d:9ls

In fact, we can write

d[NA(t)TA(t)] _
—at T_S[NA(TA+ To)e Ts/Ta
—Np(Tg+Tg)e "s'T8] —2ywaANATA
2
+ —Na(Tp,—Ta), (19
Th
d[Ng(t)Tg(t 2
[ B( ) B( )] _ —[NB(TB-‘FTs)eiTS/TB
dt T

—NA(Ta+Tg)e 's'TA] = 2ywgNgTg

=1. A more compact notation is achieved if one introduces

the collision frequency(t) and the nondimensional spon-

taneous cooling rate,

Q4 Na 44
wp= — 0" U, 13
A \/EVA A ( )
VA
Y= da, 2 (14
with Qu=27%T(d/2). The surface area of

2
+ —Ng(Tp,—Tg). (20
)

Notice that the Arrhenius type of behavior of the transi-
tion rate r.e's'TA results from the combination of two as-
sumptions:(a) the fact that only particles whose energy ex-
ceeds the threshold@ can overcome the barrieth) the
Gaussian ansatz for the velocity distribution functions. The
latter ingredient, although very convenient for numerical
work, could result too crude in some physically relevant situ-

a ations, because the dynamics represent a severe probe of the

d-dimensional unit sphere. In the remainder of the paper wextreme value statistics of the system. It is well known that

shall measure the temperature in unitsTef time in units of
7y, and length in units of.

the velocity distribution of driven and undriven granular as-
semblies might be characterized by fat velocity tail6].
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Ill. MEAN FIELD ANALYSIS

It is convenient to rewrite the coupled equations as

dNa(t 1
%:?[NBe—Ts/TB_NAe—TS/TA]' (213
S
dTx(t) 1 _ B
AT gL :[Z(NATAe Ts/TA—NgTge 's'Te)
S
+(Npe ™ Ts/Ta—Nge™ 's/Te) (2T~ Tp)]
2
—2ywpANAT A+ T_bNA(Tb_TA)a (21b
dTg(t 1
B o1 = — —[2(NgTge Ts/T8B—N,Tre "s'Ta)
dt T
S

+(Nge Ts/Ts—N, e~ Ts/TA) (2T~ Tp) ]

2
—2ywgNgTg+ T_NB(Tb_TB)- (219
b

Let us observe that in the temperature equations there
appear two types of fluxes: the first due to the unbalance of
kinetic energies, and the second due to the population differ- <
ence. We identify the first with a heat conduction process and Th

the second with a particle diffusion process.
One sees by inspection that the choislg=Ng=N*

=N/2 andT,=Tg=T* represents a symmetric solution for

PHYSICAL REVIEW E 68, 031306 (2003

FIG. 1. Variation of the eigenvalues of the dynamical matrix
with respect to the granular temperature. Notice that below the criti-
cal temperature the less negative eigenvalue displays a maximum.
This is determined by the competition between the inhibiting factor
due to the wall and the collisional dissipation which favors a sym-
metry breaking.

2
1 T, (T
AT ITF _S _S _
5Ta=_e 2+t T*) (6Tp— 6Tg)
N ayor+ 2 sTer = ie—Ts’T*(T*+2T)
Y B N* | 7 s
+yw* T* | 6N, (25)

all values of the control parameters. The granular tempera-

ture of the symmetric stat&l*, is given by the nonlinear

N*

* _ 2
T 1+ 7o (1 a)ZVA

(22

The eigenvalues of the associated 3 matrix of coeffi-
cients give the three relaxation modes. By adding and sub-
tracting the last two equations the linear system factorizes
into a decoupled equation for the average value of the two
temperatures [(8Tao+ 6Tg)/2] with eigenvalue A;=
—(3yw* +2/7,) and a system of rank 2 involving the tem-
perature difference and the occupation number. The more

In order to ascertain the stability of such a symmetric solunegative of the remaining eigenvalugge call it \,) is of

tion we assumeTp=T*+ 6T, Tg=T*+6Tg, and N,

the same order as;, while the second, say,, is smaller in

=N*+ 6Np(S6Ng= — 6N,) and expand the equations to lin- absolute value and vanishes at the “special” temperature

ear order about the fixed poiit*,N* with the result

. 1 .
5NA: - _eiTS/T
Ts

N*Tg
25NA+ (TT)Z(STA_ (STB) ,
(23

2

1
- AT s s _
§Ta=— e M2+ s (6Tp—6Tg)
B S —e T/ T (T* + 2T,)
Y A N* | s s
+y@* T* | 5Ny, (24)

T, . This is obtained by solving the transcendental equation
Ts 3} 75
x| > |5 —TsIT
0 (Tcr 2) ™ 2e 's'ler, (26)

Figure 1 shows that above the temperatlitgg, N\, is
negative, thus making the symmetric solution stable, whereas
for temperatures below it is positive. In such a case the
symmetric fixed point is unstable and the solution flows
away, to an asymmetric fixed point. Hereafter, we shall use
the word “critical temperature” or “critical line” instead of
“special” [20].

Let us also notice that when the typical collision time is
much shorter than the characteristic timgsand , the tem-
peratureT . —2T¢/3, which represents an upper bound for
such a quantity.
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At this stage a few comments are in order. The transition 1000
results from the competition between two effects: the diffu-
sion due to the “thermal” agitation of the particles, i.e., the
tendency to fill all the available space, and the dissipation of
energy during collisions which favors clusterization.

When the external drive is sufficiently weak there appears 600
a second fixed point. This is found by imposing the detailedy Nk
balance AE

800

400
NB e*TS/TA )
Na e Ts/Ts @7 200

and the energy balance 0

10° ?

- TE(NATAeiTS/TA_ NgTge 's/T8) = 2ywaNaTA
s FIG. 2. Evolution of the populations in the two compartments
2 versus time, for three different choices of the heat bath temperature,
+ —Na(T,—Ta)=0, (28)  T,=0.2,0.3,1. The remaining parameters axe: 1000, T,=1, V
o =100, 0=1, 7,=1, 7,=0.5, =0.7.

E(NATAefTs/TA_NBTBe*Ts/TB)_zwaNBTB In Fig. 4 we display the line of critical point§., as a
Ts function of the inelasticity (* «) for two different values of
2 the total number of particles. Above the line the solutions are
+ —Ng(Tp—Tg)=0. (29 symmetric Ny=Ng), below are asymmetric. Let us observe
b that for «=1 one findsT;,=0, because there is no cluster-
ing instability in systems of elastic particles. The smaller the

A good approximation to the highest eigenvalue in such Yalue of @, the higher the value of the critical temperature.

case reads We also notice that the slope of the critical line is non-
2 . . negative. When the total number of particles decreases, also
Alzge*Ts’T [w* Y(Ts/T, —3/2)—1r,—2e /T ]. the critical temperature decreases, because of the lower col-

lision rate.

One observes two regions where the solutions are appar- Figure 5 illustrates the behavior of the order parameter
ently metastable. The first is the low-temperature region€=|Na—Ng|/N versus the heat bath temperature for two

where a detailed inspection shows that the symmetric statdifferent values of the total number of particles.
in reality, is very weakly unstable. From Fig. 1 we see that at L€t US notice that when particles are added to the system

low temperaturesT* —0) the positive eigenvalug, van- the critical point shift_s up_-wards. This explains why the

: . 1T S steady number of particles in the less populated compartment
|she§ expoqentla!ly as ', thus |qd|cat|ng that the SYM- gecreases when more particles are add4di

r."e.”'c solution mlght appear §tablle if the obser\_/atlon time Is Finally, we comment that, within our perspective, the ap-
finite. In fact, the interwell diffusion fofT,—0 is almost proach of Lohset al.[12] and of Lipowski and Drof14] is

completely suppres_sed by the Arrhenius factpr. ._equivalent to an adiabatic approximation for the temperature
The second region where the system displays genuine

(metagstability occurs just abovd,,. A branch with Ny . . . . ,
#Ng andT,# Tg is observed by integrating numerically the
system(21) by means of an Euler scheme. These asymmetric  gsE 1

stationary states are obtained by preparing the system in . — T=02

" ; . ast ; : -- T =045
subcritical configuration T2%'<T,), and successively in- 04l T=10 i
creasing the temperature abolg . The width of the region I e
is about 10% ofT,,. The observed hysteresis agrees quali- 4 £ e |
tatively with the results relative to the model of REE4]. F==2l0 .

The numerical solutions of the coupled equations are dis- ,
played in Figs. 2 and 3. We observe that a perturbation abou
the symmetric solution is readsorbed > T, , whereas
for temperatures below,, the perturbation grows initially at
an exponential rate, before saturating about a finite value. Le N
us notice that at low temperatures, due to the presence of th 0 1000 2000
Arrhenius factor, the saturation process occurs extremely :
slowly, a phenomenon that is not related to the slowing down FIG. 3. Granular temperatures in the two compartments corre-
that occurs only in the vicinity oT, . sponding to the evolution of 2.

e
s
T
1
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' ' ' ' ' ' ' ' and that these quantities are sufficient to characterize the
I R state of the system. Do statistical fluctuations play any role
0'6__ e ] or even modify the picture presented above? In the present
o5k //' | section, which is not intended to be exhaustive, we solve the
e ) model of Sec. | by means of the DSMC method. The moti-
0.4 ,', ] vation is twofold: we want to validate the picture and the
T ) approximations introduced above and unveil some phenom-
03H , ena that are not accounted for by a mean field description.
H . We simulated two ensembles Nfy and Ny particles, re-
0.271 — N=1000 . spec_tively, .subjelct. to a Gaus_s_ian forcing, .viscous friction,
! . N;IOOOO 1 and inelastic collisions. In addmon, the partllqles of h|gh en-
0.1+ — ergly can change compartment with probability per unit time
b iy Ts -
73 | S v — |y —1 The scheme consists of the following ingredients.
l-o Time is discretized, i.et,=ndt.

Update all the velocities to simulate the random forcing

FIG. 4. Critical line for two different choices of the total number . .
and the viscous damping,

of particles 100@below) and 10 00Qabove according to the mean
field theory. Vertical axis temperature, horizontaH &). The line
represents the granular critical temperature as the inelasticity (1 v (t+dt)=vi(t)e W+ (Ty(1—e 2 b)W(t),
—a) varies from 0 to 1. Below the critical line the symmetric

solution is unstable; above it is stable. The remaining parameters ) o . ]
are the same as in Fig. 2. whereW(t) is a normally distributed deviate with zero mean

and unit variance.

variables. In their cases, the two granular temperatures are At every time step and for both compartments, a collision
assumed to be slaved by the occupation number variables. f{€p iS performed, i.e., an adequate number of randomly cho-
other words, one postulates that the temperatures depend 8@n pairs of velocities are updated with the collision (@Je
the instantaneous values of the occupation numbers. W&€ pairs are chosen with a probability proportional to their
implemented this idea within our approach, but we found d€lative velocity and normalized in order to have a mean
large discrepancy with the previous approximation. In realCollision frequency as calculated in EG3).

ity, the temperature and the occupation variable vary on the Place in the other compartment with probabibity/ 7 par-

same time scale and no slaving principle seems to occur. ticles with kinetic energy greater tharn.
Change the time counterand restart.

To summarize, at every step each particle experiences a
IV. MONTE CARLO SIMULATIONS Gaussian kick and receives energy from the bath, but dissi-

In deriving the evolution equations of the preceding sechates a frac_tion of its kinetic energy by coll?sion ’?‘”d by
tion, we have implicitly stipulated that the values of the OC_dampmg. With respect to previous DSMC simulations of
cupation number and of the kinetic energy per particle ingranular gases particles can migrate to another compartment,

each box have narrow distributions around their mean Value\g/henever the|r energy exceeds a fixed threshold. No packing
effects are included.

The parameters chosen in the simulation &ge=1, V
' =100, o=1, 7,=1, 7s=0.5, a=0.7, whereas the total
1 number of particleN and Ty, have been varied.
= First, we analyze the evolution of the order parameter
INA—Ng|/N, when the system is prepared in a symmetric
configuration. The order parameter displays a behavior simi-
lar to that obtained by means of the mean field theory. In
addition, it displays fluctuations around its asymptotic value.
- In Fig. 6, an average over 200 realizations of the evolution of
the order parametdiN,— Ng|/N is shown. The numerical
simulations are in agreement with the results of the mean
7 field theory. ForT,>0.45 the system remains substantially
homogeneous. Far,<0.45 the homogeneous state becomes
L unstable and the stable configuration that is reached is
038 strongly asymmetric.
Interestingly, we observe a much slower growsiee in-
FIG. 5. Asymmetry parameter VE, plotted for two different ~ S€) near the critical temperaturé;,~0.45. The same kind
choices of the total number of particles: 1000 and 1200. The reof phenomenon appears at low temperaturés (), be-
maining parameters are the same as in Fig. 2. Notice the differencgause the transitions from one compartment to the other rep-
between the two curves and the presence of the hysteresis. resent very rare events.

(30

0.8

0.6
IN,-N| |
04

0.2
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FIG. 6. Evolution of the order parameter versus tini. FIG. 8. Velocity distribution functions in each compartment for
=1000, butT, is varying, while the other parameters afg=1,  two different values off, andN=21000. The other parameters are
V=100, 0=1, 7,=1, 7,=0.5, =0.7. the same as in Fig. 6. The lines represent Maxwellian velocity dis-

tributions, whose variances have been determined from fits of the

In Fig. 7 the temperature evolutiofis(t) andTg(t) (af- ~ Numerical data.

ter averaging over 200 realizations and relabeling the com-
partments in such a way thatis always the most populated the matrix of evolution vanishes. The picture looks somehow
are displayed. The plateau valuesTof and Tg verify (with  different when microscopic fluctuations are accounted for.
small deviations, not larger than 10%) Eg7). One observes a remarkable behavior in the order parameter

The velocity fluctuation can be appreciated by considerevolution; namely, in the earlier regime it grows in a power
ing the velocity PDF’s of the two compartments, Fig. 8. Ap- law fashion as il,—Ng)?~t, and not exponentially. To ex-
preciable deviations from a Gaussian have not been detectgdain this phenomenology we remark that the evolution of
in all cases consideregeither above, neither below, nor in the order parameter nedg, can be assimilated to that of a
the proximity of the critical temperature particle undergoing a random walk. We assume that the early

The order parameter, instead, shows less trivial fluctuaevolution of AN(t)=Nx(t)—N/2 can be effectively de-
tions. A typical trajectory is shown in Fig. 9. The associatedscribed by the following equation:
distribution is shown in Fig. 10. We observe that at high
temperature the population distributid(N,) is well ap-
proximated by a Gaussian distribution, but displays two sym- JAN()
metric peaks about the central valdig=500 when the sys- at
tem approaches the critical temperature. Finally, at low
temperature we find two very narrow peaks, well separated
and centered around, =950 andNg=50.

Let us consider more closely the behavior of the orde
parameter near the critical point. According to the mean fiel
description of Sec. Il, al, the less negative eigenvalue of

=Y(Tp)AN(t) +A(Ty) 7 (31)

with vy lesser than zero above the critical temperature and
Igreater than zero under the critical temperature aadwvhite
OGaus&an noise. In this case

0.5
05
045
i
= 04
0.35

—
T,=1

ggdk? Sé %&{é’ ?é ,=0.45

0.3' ) | ' 1 ) | ' .-
I 20000 50000
025 . - -
Hm 02. =0.2
< T,=0.3 ]
0.15 50000
0.1 I N | . 1 N | . . | L | N | . &05
0 500 1000 1500 O 500 1000 1500 20 FIG. 9. Fluctuations of the occupation numbex(t) vs time,

when the system is in its statistically stationary state for three dif-
FIG. 7. Temperature evolution for various values of the heatferent choices of,. The other parameters are the same as in Fig.
bath temperature. The other parameters are the same as in Fig. @.
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FIG. 10. Probability distribution functions of the occupation
numbers in a single weltop and middle panel, respectivegnd in
the two wells (bottom panel referred to a system ofl=1000
particles. The other parameters are the same as in Fig. 6.

FIG. 11. Study ofA? and y versusT,.

more energetic particles are removed causing a large nega-
tive fluctuation of the associated average kinetic energy. The
positive energy flux provided by the heat bath is not suffi-

cient to compensate the energy loss due to the removal of the
A2 2 fast particles. This phenomenon is not observed in the mean

=|(AN(0)AN(0))+ > et 2—e77, field model, because it results from the large non-Gaussian
Y Y fluctuations of the velocity PDF. We checked the fourth cu-

(32 mulant and observed that whereas the cumulant relative to

] ) ) ) ) the populated compartment corresponds to a Gaussian, the
which means that ify<0 (asymptotically in a time greater c,muylant of the small population strongly fluctuates. Experi-
than 1/y|) the equal time correlation function becomes mentally it might be hard to observe such a phenomenon,

C(7,t)=(AN(t+ 7)AN(1))

A2 which is probably an artifact of the model, because the limit
(AN(H)AN(t))— — =— (33 of sr_nall Ts IS not very realist_ic. _
2y Finally, our schematization of the compartmentalized

) granular gas recalls the Gibbs ensemble method of equilib-
or equivalenty A=y-2y(AN%, where AN?  jym statistical mechanics, whereby it is possible to study

=lim;_,..C(0,t). On the other hand, whep=0 (i.e., in cor- first order phase coexistence without interfaf2%.
respondence of the critical pojnthe equal time correlation

function displays a diffusive behavior: V. CONCLUSIONS

(AN(t)AN(t))— A% (34) To summarize, we introduced a model for a compartmen-

o o ] talized granular gas which allows to bridge between the
that means that the diffusion coefficient for the variahld

is given byD =A?/2, 1000

Eventually in the late regime the growth saturates due to  ggol-
the onset of nonlinear effects. = 6ol

In order to verify the plausibility of Eq(31) we determine =
A and y by extracting them from numerical measures of = 400
lim,_..C(7,t) and imposing the asymptotic behavior 200
—(A%/2y)e”". In Fig. 11 we display the values of the con- ob— .
stants obtained from simulations above the critical tempera- ¢ 1k ]
ture. We also added to the plot the value of the diffusion o[ -~ ~~ 1
coefficientD = A%/2, as measured at the critical temperature. l-f°006 [z . h

Interestingly, when the characteristic timg decreases <t bl ‘“\“ .
(namely, 7,=0.1) an interesting phenomenon appears: the %[ . ]
temperature of the less populated compartment exhibits ar 002 el s o]
initial regime, during which it increases, due to the decre- 0 200 400 600 800 1000
ment of the number of collisions the particles experience,
followed by a second regime where the temperature instead F|G. 12. Populations and granular temperatures of the two com-
decreasesand eventually reaches a temperature lower thampartments wherr is small. Notice that the temperature of the less
the temperature of the more populated contaifiég. 12.  populated compartment initially rises, and successively decreases
This kind of anomaly is due to the fact that the fastest andelow the temperature of the other compartment.

031306-8



STATISTICAL MECHANICS OF GRANULAR GASES IN . .. PHYSICAL REVIEW B8, 031306 (2003

microscopic level to the hydrodynamic level. In the first partbehaviors. The dynamics has been characterized in the vari-
of the paper we have derived a Fokker-Planck-Boltzmanmus regimes. In the last part of the paper we have solved the
description starting from the stochastic evolution of the par{full model by means of DSMC. The presence of stochastic
ticles’ coordinates. Next, by employing a Gaussian ansatz fofluctuations leads to properties not observed in a mean field
the velocity distribution function, we have obtained a closeddescription. These are the presence of critical fluctuations, of
set of equations for the slowly varying fields, namely, theanomalies in the dynamics of the populations, and in popu-
granular temperatures and occupation numbers of each contion fluctuations.

partment. Let us comment that with respect to existing flux

models, our approach treats analytically the granular tem-

perature on equal footing as the occupation variables. The ACKNOWLEDGMENTS
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